Hyperspaces, compactifications, and N-linked systems
Roger W. Wardle
1982

The Vietoris topology F on the hyperspace of non-empty closed subsets of a space X is the supremum of the upper semi-finite (U) and lower semi-finite (L) topologies on the hyperspace. This hyperspace with the U topology is denoted $U(X)$ and the hyperspace of $U(X)$ with the L topology is denoted $L(U(X))$. The space $L(U(X))$ is at $T_{(0)}$ space which contains as subsets many different extensions of X. In particular, if X is Tychonoff, the Stone-Cech compactification (βX) is one such subset; this relies on the z-ultrafilter description of (βX). As a subset of $L(U(X))$, (βX) is compact but not closed. This fact allows us to represent each Hausdorff compactification of X as the union of X (L-HOOK) (βX) and certain points of the boundary of (βX). More generally, by altering the U topology, we can do the same for each Wallman compactification of X.

The second part of the thesis generalizes ultrafilters in the following way: we call a collection of closed subsets of a $T_{(4)}$ space X an n-linked system if and only if every subcollection of (LESSTHEQ) n sets has non-empty intersection in X. The set $(SUMM)(,n)(X)$ of all maximal n-linked systems is a subset of $L(U(X))$; it is an extension of X in which X is not a dense subset. The space $(SUMM)(,2)(X)$ was discovered by J. de Groot and is called the superextension of X. It is a supercompact Hausdorff space, and has several nice properties. For n (GREATERTHEQ) 3, $(SUMM)(,n)(X)$ has similar, but not so well-behaved, properties. It is not compact, but is cocompact, hence a Baire space. If X is compact metric, then $(SUMM)(,n)(X)$ is metrizable, and conversely. For $n = 2$, $(SUMM)(,2)(X)$ is connected and locally connected if and only if X is connected. Connectivity for n (GREATERTHEQ) 3 is more difficult to prove. For example, we have $(SUMM)(,n)(X)$ connected if X is a continuum which satisfies any one of the properties: (1) no finite subset separates X, (2) X is linearly ordered, (3) X is arcwise connected and metric. For each j (ELEM) $\{2,...,n-1\}$ there is a topology $L(,j)$ for $(SUMM)(,n)(X)$ which is weaker than the subspace topology L; there is also a set $(SUMM)(,n)(,j)(X)$ derived from $(SUMM)(,n)(X)$ such that $((SUMM)(,n)(,j)(X),L)$ is a continuous open image of $((SUMM)(,n)(X),L(,j-1))$ (we take $L(,1) = L$).

Finally, we examine the U, L, and F topologies for the hyperspaces of an arbitrary space X. Some very weak separation properties for X characterize certain properties of the closure operator in $U(X)$ ($L(X),F(X)$) and determine when each space contains a homeomorphic copy of X.